Vocal performance affects metabolic rate in dolphins: implications for animals communicating in noisy environments.

نویسندگان

  • Marla M Holt
  • Dawn P Noren
  • Robin C Dunkin
  • Terrie M Williams
چکیده

Many animals produce louder, longer or more repetitious vocalizations to compensate for increases in environmental noise. Biological costs of increased vocal effort in response to noise, including energetic costs, remain empirically undefined in many taxa, particularly in marine mammals that rely on sound for fundamental biological functions in increasingly noisy habitats. For this investigation, we tested the hypothesis that an increase in vocal effort would result in an energetic cost to the signaler by experimentally measuring oxygen consumption during rest and a 2 min vocal period in dolphins that were trained to vary vocal loudness across trials. Vocal effort was quantified as the total acoustic energy of sounds produced. Metabolic rates during the vocal period were, on average, 1.2 and 1.5 times resting metabolic rate (RMR) in dolphin A and B, respectively. As vocal effort increased, we found that there was a significant increase in metabolic rate over RMR during the 2 min following sound production in both dolphins, and in total oxygen consumption (metabolic cost of sound production plus recovery costs) in the dolphin that showed a wider range of vocal effort across trials. Increases in vocal effort, as a consequence of increases in vocal amplitude, repetition rate and/or duration, are consistent with behavioral responses to noise in free-ranging animals. Here, we empirically demonstrate for the first time in a marine mammal, that these vocal modifications can have an energetic impact at the individual level and, importantly, these data provide a mechanistic foundation for evaluating biological consequences of vocal modification in noise-polluted habitats.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Do Dolphins Rehearse Show-Stimuli When at Rest? Delayed Matching of Auditory Memory

The mechanisms underlying vocal mimicry in animals remain an open question. Delphinidae are able to copy sounds from their environment that are not produced by conspecifics. Usually, these mimicries occur associated with the context in which they were learned. No reports address the question of separation between auditory memory formation and spontaneous vocal copying although the sensory and m...

متن کامل

The metabolic cost of communicative sound production in bottlenose dolphins (Tursiops truncatus).

Bottlenose dolphins (Tursiops truncatus) produce various communicative sounds that are important for social behavior, maintaining group cohesion and coordinating foraging. For example, whistle production increases during disturbances, such as separations of mother-calf pairs and vessel approaches. It is clear that acoustic communication is important to the survival of these marine mammals, yet ...

متن کامل

The Metabolic Costs of Sound Production in Odontocete Cetaceans

Animals often increase the amplitude (the Lombard effect), duration, and/or repetition rate of their acoustic signals as a strategy to help reduce the probability of masking from environmental sounds (NRC 2003). Although accumulating evidence from recent research (Scheifele et al. 2005, Holt et al. 2009, Parks et al. 2010) illustrates that several marine mammal species readily modify the parame...

متن کامل

Estimated communication range and energetic cost of bottlenose dolphin whistles in a tropical habitat.

Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was...

متن کامل

The Metabolic Cost of Click Production in Bottlenose Dolphins

Animals often increase the amplitude (the Lombard effect), duration, and/or repetition rate of their acoustic signals as a strategy to help reduce the probability of masking from environmental sounds (NRC 2003). Although accumulating evidence from recent research (Scheifele et al. 2005, Holt et al. 2009, Parks et al. 2010) illustrates that several marine mammal species readily modify the parame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 218 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2015